Mathematical Applications in Engineering and Science

M. Talha Aziz Graduate Student Reading Seminar

Week 1: Introduction to Topics

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Proposed Topics for Consideration

Mechanical and Aerospace Engineering

Quantum Computing

Artificial Intelligence and Machine Learning

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mathematical Biology

Why Mechanical and Aerospace Engineering?

- Critical for advancing technology in transportation, energy, and exploration.
- Applications span:
 - Aircraft and spacecraft design.
 - Renewable energy systems like wind turbines.
 - Autonomous vehicles and drones.

Governing Equations:

Navier-Stokes Equations: Describes fluid motion.

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}$$

Heat Transfer Equation: Describes thermal energy distribution.

$$\frac{\partial T}{\partial t} - \alpha \nabla^2 T = Q$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mathematical Foundations in MAE

Figure: Flow visualization of a turbulent jet, made by laser-induced fluorescence. The jet exhibits a wide range of length scales, an important characteristic of turbulent flows.

Numerical Methods:

- Finite Element Analysis (FEA) for structural mechanics.
- Computational Fluid Dynamics (CFD) for flow simulation.

Millennium Prize Problem:

- Prove the existence and smoothness of solutions in three dimensions.
- One of the seven Millennium Prize Problems, with a 1,000,000 dollar reward for a solution!

Quantum Computing: Revolutionizing Computation

What is Quantum Computing?

- Harnesses principles of quantum mechanics (superposition, entanglement).
- Operates using quantum bits (qubits), capable of existing in multiple states simultaneously.

Why is it Important?

Solutions for problems like factoring large numbers (Shor's algorithm) and unstructured search (Grover's algorithm).

Quantum Error Correction:

- Protects quantum information from decoherence and noise.
- Uses redundancy and entanglement to correct errors without measuring quantum states directly.

Bloch Sphere Representation:

- Visualizes a single qubit as a point on a unit sphere.
- Demonstrates superposition and quantum state manipulation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mathematical Foundations in Quantum Computing

Figure: Bloch Sphere Representation of a Qubit

- Linear algebra: Quantum states are vectors in Hilbert space.
- Complex numbers and unitary operators: Govern quantum gates and evolution.
- Probability and statistics: Measurement outcomes are probabilistic.
- Qubit representation: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$.

- Quantum gates: $U|\psi\rangle$ (unitary transformations).
- Entanglement: $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$

Artificial Intelligence and Machine Learning

What is AI and Machine Learning?

- ► AI refers to the simulation of human intelligence in machines.
- Machine learning (ML) is a subset of AI that enables computers to learn patterns from data.

Applications:

- Al-powered chat systems for customer support and health consultations.
- Predictive analytics for forecasting trends in various industries.
- Optimization algorithms used in robotics and automation.

Figure: Neural Network Diagram in AI and Machine Learning

Artificial Intelligence and Mathematical Reasoning

Key Questions:

- How can AI assist in mathematical reasoning?
 - Automating proofs and theorem verification.
 - Symbolic reasoning and problem-solving with AI.
 - Al-based assistants for research (e.g., Lean, Coq, Wolfram Alpha).
- Can AI write mathematics instead of manually writing formulas?
 - AI for LaTeX and automated equation generation.
 - Al-driven symbolic computation (e.g., Mathematica, SymPy).
- What are the mathematical foundations of AI?
 - Linear algebra: Vectors, matrices, and transformations.
 - Probability theory: Bayesian models and uncertainty quantification.
 - Optimization: Gradient descent and loss minimization.
- How does AI work internally?
 - Architecture: Structure of neural networks and deep learning models.
 - Backpropagation: The core algorithm for training neural networks.
 - Hardware: Role of GPUs and TPUs in accelerating Al computations.

Mathematical Biology: Genome Assembly

What is Genome Assembly?

- Reconstructing a genome from fragmented DNA sequences.
- Critical for personalized medicine, evolutionary studies, and biodiversity research.

Why is it Mathematically Interesting?

- Involves NP-hard optimization problems.
- Heavy reliance on graph theory: Eulerian circuits and Hamiltonian paths.

Mathematical Foundations:

- De Bruijn graphs:
 - Nodes represent k-mers (substrings of length k).
 - Edges represent overlaps of k 1 bases.

Coverage probability equation:

$$P=1-\left(1-rac{\ell}{G}
ight)^n,$$

where ℓ = read length, G = genome size, n = number of reads. ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outcome

Key Outcomes of the Seminar:

- Understanding of Mathematical Foundations across different disciplines (MANE, Quantum Computing, AI/ML).
- Exploration of Real-World Applications in engineering, computation, and modeling.
- Introduction to Key Equations and Methods such as Navier-Stokes, Quantum Gates, and Neural Networks.
- Interdisciplinary Problem-Solving through discussions and mathematical analysis.
- Preparation for Advanced Topics & Research Directions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank You!

Questions? Let's Discuss!

Website: https://mtalha086.github.io/graduate*readingseminar/* Join Our Discord: https://discord.gg/StX35NbJ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●